poj 3237(树链剖分+线段树)

poj 3237

树剖+线段树。
刚开始想用记录该区域被NEGATE了几次,结果发现不可行,翻别人博客发现了原来维护最大值$maxv$和最小值$minv$,NEGATE就是$maxv=-minv, minv=maxv$, 正确性显然。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i, j, k) for (i=(j);i<=(k);i++)
#define fd(i, k, j) for (i=(k);i>=(j);i--)
#define fe(i, u) for (i=head[u];i!=-1;i=e[i].next)
#define rd(a) scanf("%d", &a)
#define rd2(a, b) scanf("%d%d", &a, &b)
#define rd3(a, b, c) scanf("%d%d%d", &a, &b, &c)
#define ms(i, j) memset(i, j, sizeof i)
#define FN2 "poj3237"
using namespace std;
const int MAXN = 10000 + 5, INF = 200000000;
struct data{int to, next;}e[MAXN*2];
int n, wi[MAXN], ai[MAXN], bi[MAXN], head[MAXN], cnt;
int p[MAXN], top[MAXN], son[MAXN], dep[MAXN], fa[MAXN], siz[MAXN];
int pre;
void dfs1(int u, int pa) {
int i;
dep[u] = dep[pa] + 1, fa[u] = pa, siz[u] = 1;
fe (i, u) {
int v = e[i].to;
if (v!=pa) {
dfs1(v, u);
siz[u] += siz[v];
if (son[u]==-1||siz[son[u]]<siz[v]) son[u] = v;
}
}
}
void dfs2(int u, int chain) {
int i;
p[u] = ++pre, top[u] = chain;
if (son[u]!=-1) {
dfs2(son[u], chain);
fe (i, u) {
int v = e[i].to;
if (v!=fa[u]&&v!=son[u]) dfs2(v, v);
}
}
}
#define lc (o<<1)
#define rc (o<<1|1)
#define M ((l+r)>>1)
int maxv[MAXN*4], minv[MAXN*4], lazy[MAXN*4];
void proc(int &a, int &b) {int t = a; a = -b, b = -t;}
void pushup(int o) {
maxv[o] = max(maxv[lc], maxv[rc]);
minv[o] = min(minv[lc], minv[rc]);
}
void pushdown(int o, int l, int r) {
if (l==r) return ;
if (lazy[o]) {
lazy[lc] ^= 1, lazy[rc] ^= 1;
proc(maxv[lc], minv[lc]), proc(maxv[rc], minv[rc]);
lazy[o] = 0;
}
}
void update(int o, int l, int r, int p, int v) {
pushdown(o, l, r);
if (l==r) {
maxv[o] = minv[o] = v;
return ;
}
if (p<=M) update(lc,l,M,p,v); else if (M<p) update(rc,M+1,r,p,v);
pushup(o);
}
void ngt(int o, int l, int r, int x, int y) {
pushdown(o, l, r);
if (x<=l&&r<=y) {
proc(maxv[o], minv[o]);
lazy[o] = 1;
return ;
}
if (x<=M) ngt(lc,l,M,x,y);
if (M<y) ngt(rc,M+1,r,x,y);
pushup(o);
}
int query(int o, int l, int r, int x, int y) {
pushdown(o, l, r);
int ret = -INF;
if (x<=l&&r<=y) return maxv[o];
if (x<=M) ret=max(ret,query(lc,l,M,x,y));
if (M<y) ret=max(ret,query(rc,M+1,r,x,y));
return ret;
}
void tongt(int u, int v) {
int f1 = top[u], f2 = top[v];
while (f1!=f2) {
if (dep[f1]<dep[f2]) swap(f1, f2), swap(u, v);
ngt(1,1,n,p[f1], p[u]);
u = fa[f1], f1 = top[u];
}
if (dep[u]<dep[v]) swap(u, v);
ngt(1,1,n,p[v]+1, p[u]);
}
int toget(int u, int v) {
int f1 = top[u], f2 = top[v], ret = -INF;
while (f1!=f2) {
if (dep[f1]<dep[f2]) swap(f1, f2), swap(u, v);
ret = max(ret, query(1,1,n,p[f1], p[u]));
u = fa[f1], f1 = top[u];
}
if (dep[u]<dep[v]) swap(u, v);
return max(ret, query(1,1,n,p[v]+1, p[u]));
}
void ins(int u, int v) {
cnt++; e[cnt].to = v, e[cnt].next = head[u], head[u] = cnt;
cnt++; e[cnt].to = u, e[cnt].next = head[v], head[v] = cnt;
}
void init() {
int i; rd(n); cnt = pre = 0;
fo (i, 1, n) head[i] = -1, p[i] = 0, top[i] = 0, son[i] = -1, dep[i] = 0, fa[i] = 0, siz[i] = 0;
fo (i, 1, n*2) e[i].to = 0, e[i].next = -1;
fo (i, 1, n*4) maxv[i] = -INF, minv[i] = INF, lazy[i] = 0;
fo (i, 1, n-1) {
rd3(ai[i], bi[i], wi[i]);
ins(ai[i],bi[i]);
}
}
void solve() {
int i;
dfs1(1, 0), dfs2(1, 1);
fo (i, 1, n-1) {
int a1 = ai[i], b1 = bi[i];
if (dep[a1]>dep[b1]) update(1,1,n, p[a1], wi[i]);
if (dep[a1]<dep[b1]) update(1,1,n, p[b1], wi[i]);
}
char ch[10];
while (1) {
scanf("%s", ch);
if (ch[0]=='D') break;
if (ch[0]=='C') {
int x, v; rd2(x, v);
int a1 = ai[x], b1 = bi[x];
if (dep[a1]>dep[b1]) update(1,1,n, p[a1], v);
if (dep[a1]<dep[b1]) update(1,1,n, p[b1], v);
}
if (ch[0]=='N') {
int u, v; rd2(u, v);
tongt(u, v);
}
if (ch[0]=='Q') {
int u, v; rd2(u, v);
printf("%d\n", toget(u, v));
}
}
}
int main() {
#ifndef ONLINE_JUDGE
freopen(FN2".in","r",stdin);freopen(FN2".out","w",stdout);
#endif
int t; rd(t);
while (t--) init(), solve();
return 0;
}

一个很弱的数据:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
input:
1
12
1 2 6
2 3 7
3 4 1
3 5 -4
5 6 -3
1 7 2
7 8 3
7 9 6
7 10 7
9 11 -1
11 12 4
QUERY 6 12
CHANGE 2 10
QUERY 6 12
NEGATE 5 2
QUERY 6 12
CHANGE 4 10
QUERY 6 12
NEGATE 8 10
QUERY 6 12
DONE
output:
7
10
6
10
10

------ 本文结束 ------